Archivo de la etiqueta: biocombustibles

La biomasa vegetal como sustituto del petróleo

Si pregunto por las sustancias más abundantes en la corteza de este planeta, seguramente me responderán con una serie de nombres de compuestos inorgánicos: dióxido de silicio, óxidos de hierro y de aluminio, agua, cloruro de sodio, óxidos y sales de calcio…

Los compuestos inorgánicos tienen aplicaciones esenciales para nuestra vida; qué duda cabe. No podríamos vivir sin agua o sin iones fundamentales como el ion sodio y el ion potasio. Y, además de nuestras necesidades fisiológicas, el mundo actual no sería lo mismo sin el amoniaco o sin el ácido sulfúrico, compuestos de producción masiva, fundamentales en el desarrollo técnico, económico y demográfico en la Edad Contemporánea. Son inorgánicos el vidrio, el cemento, el yeso, el acero y otros de los materiales más comúnmente utilizados.

Evidentemente, los compuestos inorgánicos no valen para todo. No conozco ningún ser vivo que pueda alimentarse exclusivamente de sales minerales. He oído hablar de microorganismos anaerobios que no necesitan O2 (bacterias metanogénicas, por ejemplo), pero no he tenido el placer de conocer a alguno que pueda vivir sin una fuente de carbono. Y estoy hablando de los compuestos orgánicos.

Seguir leyendo La biomasa vegetal como sustituto del petróleo

Anuncios

De la biomasa lignocelulósica hacia el etanol

La obtención de etanol a partir de biomasa lignocelulósica tiene, al menos, cuatro etapas fundamentales: pretratamiento, sacarificación, fermentación y separación. La fermentación y la separación selectiva de etanol son comunes a los procesos que parten del almidón, pero obtener azúcares de la celulosa con buen rendimiento económico es un desafío bastante mayor que obtener azúcar de una patata.

 

File:Panorama Usina Costa Pinto Piracicaba SAO 10 2008.jpg

Planta de etanol y azúcar en Brasil. El principal residuo de la caña de azúcar es el bagazo. Fotografía: Mariordo.

 

En la biomasa vegetal podremos encontrar, fundamentalmente, α-celulosa, hemicelulosa, lignina, cenizas, sales y sílice.

La α-celulosa está constituida por monómeros de celobiosa unidos por enlaces β–glucosídicos. A su vez, la celobiosa es un disacárido que consta de dos moléculas de glucosa. La hemicelulosa, por otra parte, tiene una estructura más compleja, encontrando hexosas y pentosas sin un orden definido, además de múltiples ramificaciones. Su aprovechamiento para producir azúcares sencillos y fermentables, no obstante, es igualmente posible: arabinosas, xilosas, además de, también aquí glucosas. Si bien el producto principal de la sacarificación es una mezcla de celobiosa, glucosa, xilosa y, en menor medida, otros monosacáridos y disacáridos, también se da lugar a productos que son fruto de una hidrólisis incompleta: celotriosas, celotetrosas, etc.

Los demás componentes, lamentablemente, no resultan en azúcares fermentables.

El pretratamiento de la biomasa lignocelulósica se alza como una etapa importantísima y que, con razón, suscita muchísimo interés en la investigación. Los métodos seguidos deben separar o degradar los compuestos no deseados, pero sin degradar los carbohidratos a compuestos no fermentables o, peor aún, tóxicos para los microorganismos alcoholizantes. Y, además, deben llevarse bien con el medio ambiente: ¿qué sentido tendría fabricar etanol con un fin medioambiental, si en el proceso contaminas más que produciendo gasolina? Esto invalida opciones de tratamiento con compuestos de azufre o de cloro que generen mercaptanos o efluentes con compuestos halogenados. Algunas posibilidades son: agua muy caliente, ácidos muy diluidos, amoniaco concentrado, etanol, etc.

Se entiende por sacarificación el proceso consistente en obtener oligosacáridos a partir de polisacáridos, fundamentalmente la celulosa. En la obtención de bioetanol desde celulosa, la sacarificación es la etapa previa a la fermentación: su objetivo es obtener azúcares fermentables. La obtención de biocombustibles no es la única utilización posible de esos oligosacáridos: también pueden ser empleados en la preparación de disolventes, en fármacos y productos alimenticios, y en la manufactura de bioplásticos, como el ácido poliláctico.

 

Henri Braconnot, químico, farmacéutico y botánico francés. La sacarificación de materiales lignocelulósicos no fue su único descubrimiento.

El primer proceso conocido de sacarificación de celulosa data de 1819, y fue llevado a cabo por H. Braconnot. Desde entonces, se han propuesto y ensayado centenares de métodos de hidrólisis de celulosa, empleando toda clase de agentes: ácidos, álcalis, oxidantes, microorganismos, enzimas, catalizadores heterogéneos, etc. Sin embargo, muchos procesos que obtienen grandes resultados a escala de laboratorio, cuando se ensayan a escala industrial, dan lugar a rendimientos muy inferiores. Actualmente, hay dos clases de métodos que destacan por distinto motivo:

  • los tradicionales procesos de sacarificación con ácidos, con un recorrido y una vigencia de nada menos que 195 años, aún relevantes en la actualidad;
  • los más novedosos bioprocesos de sacarificación con enzimas y/o con microorganismos, que en los últimos años están centrando el interés de investigadores y productores de bioetanol.

Una vez hemos conseguido tener una gran cantidad de pequeños sacáridos, sobre todo glucosa, en el medio de reacción, entra en juego el mejor amigo del hombre. No, el mejor amigo del hombre no es el perro. Nuestros mejores amigos son los hongos (levaduras, concretamente) y las bacterias que, en su proceso metabólico, toman azúcares como sustrato y desprenden etanol. Por ejemplo, la levadura S. cerevisiae. Así ha sido desde que el hombre descubrió cómo hacer cerveza y distintos tipos de bebidas alcohólicas. En la actualidad, claro está, el alcohol etílico tiene más fines, y uno de ellos es proporcionar energía de forma mucho más limpia que un combustible fósil.

 

S. cerivisiae, a sus anchas en su medio de cultivo.

Bioetanol. ¿De dónde?

El bioetanol es aquel etanol que:

  • se obtiene a partir de biomasa;
  • se emplea como combustible (no para bebida, limpieza, desinfección, colonia, excipiente de lociones, etc.).

La obtención de etanol a partir de biomasa requiere la fermentación de azúcares sencillos, fundamentalmente glucosa, que a su vez se puede obtener por hidrólisis del almidón, de la celulosa o, en el caso más sencillo, de la sacarosa en melazas y jugo de caña de azúcar. La hidrólisis de la sacarosa resulta en dos isómeros: glucosa y fructosa. La fermentación de los mismos con un microorganismo adecuado, como S. cerevisae, produce etanol y CO2.

Partiendo de polímeros, para obtener azúcares sencillos que serán fermentados a etanol, es necesario romper los enlaces que mantienen unidos los monómeros. Teóricamente, es decir, si el rendimiento es del 100%, se obtienen 111 g de glucosa por cada 100 g de polímero.

Seguir leyendo Bioetanol. ¿De dónde?

Por qué los biocombustibles

Se entiende por biocombustible aquel combustible que es obtenido a partir de biomasa, principalmente partes de plantas, aceites vegetales, estiércol y residuos de agricultura. El uso de biocombustibles ha atraído el interés de investigadores, fabricantes de automóviles, compañías de refinería y/o energéticas, gobiernos, asociaciones ecologistas y organismos internacionales. La atención que reciben los biocombustibles tiene fundamentalmente cinco razones.

 

File:Rapsfeld 2007.jpg

Cultivo energético de colza en Bavenhousen, Alemania. Fotografía: Daniel Schwen.

Seguir leyendo Por qué los biocombustibles